468 research outputs found

    A new approach for land degradation and desertification assessment using geospatial techniques

    Full text link
    © Author(s) 2018. Land degradation reduces the production of biomass and vegetation cover for all forms of land use. The lack of specific data related to degradation is a severe limitation for its monitoring. Assessment of the current state of land degradation or desertification is very difficult because this phenomenon includes several complex processes. For that reason, no common agreement has been achieved among the scientific community for its assessment. This study was carried out as an attempt to develop a new approach for land degradation assessment, based on its current state by modifying of Food and Agriculture Organization (FAO)-United Nations Environment Programme (UNEP) index and the normalized difference vegetation index (NDVI) index in Khuzestan province, southwestern Iran. Using the proposed evaluation method it is easy to understand the degree of destruction caused by the pursuit of low costs and in order to save time. Results showed that based on the percent of hazard classes in the current condition of land degradation, the most and least widespread areas of hazard classes are moderate (38.6 %) and no hazard (0.65 %) classes, respectively. Results in the desert component of the study area showed that the severe class is much more widespread than the other hazard classes, which could indicate an environmentally dangerous situation. Statistical results indicated that degradation is highest in deserts and rangeland areas compared to dry cultivated areas and forests. Statistical tests also showed that the average degradation amount in the arid region is higher than in other climates. It is hoped that this study's use of geospatial techniques will be found to be applicable in other regions of the world and can also contribute to better planning and management of land

    An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    Get PDF
    <b>Background</b><p></p> Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission.<p></p> <b>Methods</b><p></p> The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity.<p></p> <b>Results</b><p></p> Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours.<p></p> <b>Conclusion</b><p></p> This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable formats, may complement existing mainstream vector control tools

    BCL-2 Expression is Prognostic for Improved Survival in Non-small Cell Lung Cancer

    Get PDF
    ObjectiveWe used a large patient population to identify immunohistochemical biomarkers to enable improved prognostication in patients with non-small cell lung carcinoma (NSCLC).MethodsA tissue microarray was constructed using duplicate 0.6 mm cores of formalin-fixed paraffin-embedded tissue blocks from 609 patients with NSCLC. Immunohistochemical was used to detect 11 biomarkers including epidermal growth factor receptor, Her2, Her3, p53, p63, bcl-1, bcl-2, Thyroid transcription factor, carcinoembryonic antigen, chromogranin, and synaptophysin. A clinical database was generated prospectively at the time of tissue collection. Survival outcomes were obtained from a Provincial Cancer Registry database. Univariate and multivariate analyses were performed to look for a relationship between biomarker expression, smoking history, and survival.ResultsSurvival data for 535 cases were available. As of June 2005, 429 patients (80%) had died; of these 286 (54%) died of lung cancer, 117 (22%) died of other known causes, and for 26 (5%) the cause of death was not available. Univariate analysis revealed that bcl-2 (p = 0.007) was the only biomarker prognostic for improved overall survival (OS). bcl-2 (p = 0.021) and p63 (p = 0.025) were both found to be prognostic for improved disease-specific survival (DSS). Multivariate analysis (using age and biomarker expression) revealed that bcl-2 expression is prognostic for improved OS (p = 0.005) and DSS (p = 0.021).ConclusionsOur results suggest that bcl-2 expression is prognostic for improved OS and DSS in NSCLC. Testing for bcl-2 expression in a prospective study will help to determine its clinical relevance in prognostication
    • …
    corecore